
Analyzing Lock Contention in Multithreaded Applications

Nathan R. Tallent
Rice University
tallent@rice.edu

John M. Mellor-Crummey
Rice University

johnmc@rice.edu

Allan Porterfield
Renaissance Computing Institute

akp@renci.org

Abstract
Many programs exploit shared-memory parallelism using multi-
threading. Threaded codes typically use locks to coordinate access
to shared data. In many cases, contention for locks reduces par-
allel efficiency and hurts scalability. Being able to quantify and
attribute lock contention is important for understanding where a
multithreaded program needs improvement.

This paper proposes and evaluates three strategies for gaining
insight into performance losses due to lock contention. First, we
consider using a straightforward strategy based on call stack profil-
ing to attribute idle time and show that it fails to yield insight into
lock contention. Second, we consider an approach that builds on
a strategy previously used for analyzing idleness in work-stealing
computations; we show that this strategy does not yield insight into
lock contention. Finally, we propose a new technique for measure-
ment and analysis of lock contention that uses data associated with
locks to blame lock holders for the idleness of spinning threads.
Our approach incurs < 5% overhead on a quantum chemistry ap-
plication that makes extensive use of locking (65M distinct locks, a
maximum of 340K live locks, and an average of 30K lock acquisi-
tions per second per thread) and attributes lock contention to its full
static and dynamic calling contexts. Our strategy, implemented in
HPCTOOLKIT, is fully distributed and should scale well to systems
with large core counts.

Categories and Subject Descriptors C.4 [Performance of sys-
tems]: Measurement techniques, Performance attributes; D.1.3
[Programming techniques]: Concurrent Programming—Parallel
programming

General Terms Performance, Measurement, Algorithms.

Keywords Performance Analysis, Lock Contention, Multithread-
ing, HPCTOOLKIT.

1. Introduction
Many programs exploit shared-memory parallelism using mul-
tithreading based on thread libraries such as POSIX Threads
(Pthreads) [6]. Despite a recent surge of interest in transactional
memory [18], locks remain the principal mechanism used to guard
the integrity of shared data structures in multithreaded programs. In
fact, some of the fastest software implementations of transactional
memory use locks under the hood [11].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright © 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

Contention for locks has long been recognized as a key imped-
iment to performance for shared-memory parallel programs. Early
simulation studies of large-scale shared-memory parallel systems
showed that hot spots, such as those caused by spin-waiting for
locks on machines without coherent caches, could dramatically
degrade performance by clogging multistage interconnection net-
works [21]. Later work explored alternative implementations for
locks that reduce interconnection network traffic associated with
spin-waiting, e.g., [1, 19]. Today, the potential for performance
losses in parallel systems due to synchronization traffic resulting
from spin-waiting is well understood and in most cases it can be
largely avoided by using appropriate algorithms.

However, a fundamental performance problem caused by us-
ing locks in parallel programs and run-time systems remains: con-
tention for locks causes serialization. As a result, idling while wait-
ing for a lock reduces parallelism and parallel efficiency. For this
reason, pinpointing and ameliorating sources of lock contention
in parallel applications is of significant interest. As the number
of cores per processor increases, the scale of multithreading will
grow. Diagnosing performance bottlenecks in multithreaded appli-
cations will be of increasing interest as multithreaded applications
become ubiquitous. A tool that helps pinpoint sources of lock con-
tention and quantifies their performance impact can provide invalu-
able guidance for tuning multithreaded applications.

This paper proposes and evaluates three strategies that a perfor-
mance tool can use to gain insight into performance losses due to
lock contention. The approaches we consider move from blaming
lock contention on victims, then to suspects, and finally to perpe-
trators. This shift in perspective can be subtle — the first two strate-
gies are actually modest extensions to state-of-the-art measurement
techniques — but it is critical. Section 2 explores the utility of at-
tributing the idleness of spin-waiting for locks directly to the calling
contexts in which spin-waiting occurs (victims). Section 3 consid-
ers spreading the blame for idleness due to lock spin-waiting among
threads holding locks (suspects). Section 4 describes a new strategy
for directly blaming a lock holder for the idleness of threads spin-
ning on a lock that it holds (perpetrators).

We evaluate our new strategy of directly attributing blame for
lock contention in Section 5. We use three codes: MADNESS [16]
— a quantum chemistry application that makes extensive use of
locking; UTS [20] — an unbalanced tree search benchmark; and
SSCA #2 [4] — a graph analysis benchmark that is a member of the
Synthetic Scalable Compact Application Benchmark suite [9]. For
complex applications like these, locks may be acquired frequently
— an execution of MADNESS uses 65M distinct locks, a maxi-
mum of 340K live locks, and an average of 30K lock acquisitions
per second per thread — and the sources of lock contention can
be context sensitive. Moreover, a performance tool must not itself
significantly affect an execution. This is difficult to ensure. Adding
overhead to critical sections can make the tool itself a new source
of contention, while adding overhead outside of critical sections
can reduce contention. Consequently, any tool for understanding

lock contention must operate with very low overhead, obtain call-
ing context, and produce insightful metrics. The significance of our
result is that we achieve all these goals.

Finally, Section 6 relates our strategies to prior work; and Sec-
tion 7 offers some conclusions from our studies.

2. Attributing idleness to its calling context
2.1 A straightforward strategy
The first strategy we consider for understanding the impact of
lock contention in multithreaded programs is straightforward and
is based on two key ideas.

The first idea is to quantify lock contention by measuring lock
idleness, i.e., the idle time a thread spends waiting for a lock. Thus,
we distinguish between the useful work that a thread performs and
its idleness. If a thread repeatedly idles waiting for a lock, then
its idleness metric will consume a significant percentage of the
thread’s total effort (effort = work + idleness).

The second idea is to use call path profiling [14] to attribute
these metrics to the calling context in which they are incurred. Call
path profiling is especially useful for modular programs, where it
is important to attribute costs incurred by procedures to the dif-
ferent contexts in which the procedures are called. We use HPC-
TOOLKIT’s sampling-based call path profiler [24] that attributes
metrics to the full static and dynamic contexts in which they are
incurred. Sampling-based call path profilers use a recurring event
trigger to raise signals within the program being profiled. When an
event trigger occurs, it raises a signal, and a signal handler obtains
a call path by unwinding the call stack. HPCTOOLKIT’s profiler
incurs minimal overhead for reasonable sampling rates (typically
2–3% for 200-1000 samples/second) and is capable of measuring
and attributing performance metrics to fully optimized code.

To combine these two ideas, when attributing a sample to its
calling context, it is necessary to know whether the sample rep-
resents work or idleness. Consider the case of ‘right-sized’ par-
allelism, where each thread is associated with a unique hardware
context. In this case, threads would typically use spin locks, i.e.,
locks that busy-wait rather than yield to the operating system (OS).
Since each thread has a sample source, samples are delivered to a
thread both while it is working and while it is spinning for a lock.
To determine whether to charge a sample to a work or idleness met-
ric, we intercept a monitored application’s calls to lock routines to
set a thread-local flag immediately before and after the thread be-
gins waiting for a lock. In contrast to samples, which arrive asyn-
chronously and whose frequency can be controlled independently
of the application, this flag is set synchronously on every lock at-
tempt. Keeping instrumentation overhead low is important; the cost
of having locking routines maintain a flag is not a problem.

2.2 Blocking (sleep-waiting)
In contrast to spin locks, Pthreads mutex locks and condition vari-
ables sleep-wait. When a thread is sleeping, no user-level resources
are used, effectively muting any sampling triggers based on those
resources.1 An obvious solution to the problem at hand is to di-
rectly measure lock (or condition variable) wait time. However, this
requires gathering time stamps both before and after a wait and, if
the idleness is non-zero, attributing it to the calling context. Thus,
it is potentially necessary to perform an unwind for every lock re-
lease, which would cause significant overhead for programs that
have a high volume of lock acquisitions and releases. Applying

1 It is possible to use a sampling trigger based upon real time rather than
user time, but on standard OS’s, this does not work well with threads.
For example, on Linux, ITIMER_REAL does not provide a thread-specific
sample source and therefore delivers signals to a random thread within a
process.

this strategy to measure locking in MADNESS [16] (see Section
5.1), which performs 30K lock acquisitions per second per thread,
yielded a monitoring overhead of 260%. To reduce this overhead,
we can ‘sample’ the lock acquisitions themselves. That is, on every
nth lock acquisition, measure the thread’s idleness I and attribute
n× I units of idleness to the calling context. In effect, this scheme
amortizes the cost of heavyweight instrumentation across n lock
acquisitions.

2.3 Evaluation
For the Pthreads library, we implemented this strategy by overrid-
ing routines that could potentially cause a thread to idle: pthread_
{spin,mutex}_lock and pthread_cond_wait. To override a
routine in a dynamically linked application, we use library preload-
ing.2 That is, at program launch time, HPCTOOLKIT injects a dy-
namically linked profiling library into an unmodified program’s ad-
dress space. For statically linked programs, compilation remains
unchanged, but we require users to adjust their link step to invoke
a script that adds HPCTOOLKIT’s profiling library to a statically
linked executable.3 When a monitored application calls one of the
overridden routines, control is transferred to the monitored version
of the routine, or the override. The override then sets a thread-local
idleness flag — pessimistically assuming the thread will idle —
and immediately calls the actual Pthreads routine. When the thread
enters the lock or condition variable critical section, the Pthreads
routine returns to the override, which immediately clears the idle-
ness flag and returns to the monitored application.

This strategy computes a thread’s idleness with accuracy and
with low overhead. On average, a thread receives samples while its
idleness flag is set in proportion to the time it is actually idle. If
a thread attempts to acquire a lock many times but without con-
tention, that thread will spend relatively little time with its idle flag
set and its idleness metric will be proportionately small. In contrast,
if a thread spends a large percentage of time idle, whether due to
few or many lock acquisitions, its idleness metric will proportion-
ately reflect this fact. Consequently, our conservative assumption
yields a simple implementation without sacrificing accuracy. An-
other important benefit of this scheme is that all data is thread-local
which means that it naturally scales to a large number of threads.

One limitation of our implementation is that it does not handle
over-subscription — i.e., when there are more threads than avail-
able hardware contexts — if a thread sleep-waits.

The more serious limitation of this approach is that it fails to
yield the insight into lock contention that we desire. While this idle-
ness metric reflects contention in the sense that higher contention
results in higher idleness, it pinpoints the symptom rather than the
cause; the victim rather than the perpetrator. In other words, this
idleness metric takes a “first person” view of lock contention and
records its effect rather than its provenance by blaming a wait-
ing thread for its own waiting. To pinpoint the cause of idleness,
idle threads must have some “third person” knowledge about which
threads are responsible for their idleness. We next describe an idle-
ness metric that attempts to account for this problem.

3. Blaming idleness on lock-holders
3.1 Extending a prior strategy
In prior work, we recognized the problem of attributing idleness
as a symptom rather than as a problem source [23]. In that work,
we described an idleness metric that blamed idleness in work-
stealing programs to regions of code with too little parallelism. In
Cilk [12], such parallelism is expressed with asynchronous calls.

2 On Linux, see the loader’s special environment variable LD_PRELOAD.
3 On Linux, see the linker’s special --wrap option.

We implemented our ideas by modifying the Cilk run time to
1) track when an individual thread was working or idle; and 2)
maintain a node-wide counter representing the total number of
working (W) and idle (I) threads. Like the strategy of Section 2, if
a sample event occurs in a thread that is actively working, the thread
attributes that sample to a work metric associated with the sample
context. However, there are two key differences. First, the working
thread also attributes a fractional sample I/W to an idleness metric
associated with the sample context to blame itself for the current
idleness in the execution. Second, if a sample occurs in an idle
thread, it is simply ignored. This strategy equally spreads the blame
for not keeping threads busy at that moment to the active contexts
of working threads.

This strategy can be adapted to Pthreads. As in Section 2,
we override Pthreads routines that potentially cause a thread to
idle (pthread_{spin,mutex}_lock and pthread_cond_wait).
We add a node-wide counter to maintain the number of working
threads, W . During an override, immediately before calling an
actual Pthreads library primitive that might wait, we atomically
decrementW ; we then incrementW when the primitive returns. At
any point in time, I can be computed implicitly as T −W , where
T is the number of threads. Then we process samples as described
above.

One natural benefit of this strategy is that there is no need
to distinguish between spin-waiting and sleep-waiting. In the first
strategy it was necessary to handle sleep-waiting specially (using
timers) because sleeping threads do not receive samples. However,
in this scheme, any samples received by an idle thread are already
ignored.

Although our prior work suggested that this strategy could be
effectively applied to Pthreads, we found that it did not yield ac-
tionable insight into lock contention within complex applications
like MADNESS. There is a simple explanation for why evenly ap-
portioning blame is not very useful for a threaded application us-
ing locks. For a work-stealing scheduler such as Cilk, any working
thread may rightly be blamed for idleness: if that thread is not shed-
ding parallel work, it is part of the cause of idleness. However, the
same is not true for explicitly threaded programs. For example, if
one thread is working but not holding a lock, then it is misleading
for that thread to accept blame for threads contending for a lock.
Consequently, evenly apportioning blame is not a sound strategy.

To rectify the problem of misappropriated blame, we redesigned
the strategy to assign blame more precisely. In particular, we wish
to apportion idleness deriving from lock contention only to threads
that hold locks. We also wish to minimize the number of atomic
increments that are required during critical sections.

We classify working threads W by one of two states (ignoring
the case of over-subscription):

Wl: working directly in a lock critical section

Wco: working directly in a condition variable critical section
or any other code (neither directly in a lock nor condition
variable critical section)

Similarly, we classify idle threads I according to one of two
states:

Il: idling at a (non-condition variable) lock

Ic: idling at a condition variable (i.e., waiting for a signal) or
condition variable lock (i.e., the thread has been signalled
but is waiting to obtain the associated condition variable
lock)

Given these observations, the most natural form of blaming is:

• Blame idleness Il on workers in state Wl.

Algorithm 1: An algorithm that, on sampling a working
thread, computes that thread’s share of the blame for the exe-
cution’s idleness.

Assume: T , W , Wl and Ic are directly maintained.
Input: T , W , Wl and Ic

Wl ⇐ max(1,Wl) // Wl ≥ 1
Ic ⇐ max(0, Ic) // Ic ≥ 0
if is working within lock then

let I = (T −W) // I ≥ 0
let Il = max(0, I − Ic) // Il ≥ 0
return Il/Wl

else
let Wco = max(1,W −Wl) // Wco ≥ 1
return Ic/Wco

• Blame idleness Ic on workers in state Wco since any of the
workers in state Wco could 1) signal the threads in state Ic or
2) unlock a condition variable lock.

3.2 Making it practical
Clearly, it is possible to use four global counters to compute the
number of idle and worker threads in states Il, Ic, Wl, and Wco.
Unfortunately, these counters require frequent adjustment within
critical sections. Because a key implementation concern is mini-
mizing the overhead of the Pthreads overrides, it is important to
refrain from lengthening critical sections. For example, it is less of
a problem for the override to perform bookkeeping before calling
the actual pthread_spin_lock routine as opposed to after this
routine has returned and the lock acquired. Therefore, it is impor-
tant to minimize the number of atomic increments during critical
sections.

It is possible to reduce the number of frequently maintained
counters. Given that T = W + I , we have

W = Wl +Wco

I = T −W = Il + Ic

Consequently, to compute all necessary values it is possible to use
T (which only changes on thread creation/destruction) along with
only three frequently adjusted counters, e.g., W , Wl and Ic. All
other state can be thread-local. By directly maintaining the sug-
gested subset of counters, only two counters need to be atomically
adjusted within lock and condition variable critical sections.

Algorithm 1 shows how this scheme apportions idleness when a
sample is fielded by a working thread. If the worker is in category
Wl, it attributes one unit of work to its work metric and Il/Wl

units of idleness to its idleness metric. Otherwise the worker is
in category Wco and it attributes Ic/Wco units of idleness to its
idleness metric. The algorithm uses max to account for possible
timing windows between the (multiple) atomic increments that
occur during the overrides.

It is worth noting that there are complications with correctly
maintaining the global counters. For example, because critical sec-
tions can be nested, a thread can move from state Wco to Wl and
back, which means that correctly maintaining counters requires
some care.

3.3 Evaluation
Unfortunately, we found that even our extension to more precisely
attribute blame was ineffective for complex programs. There are
two key problems.

The first problem is that contention to atomically increment
or decrement the global counters can be a significant issue. By

using tuned primitives and by preventing false sharing with cache-
block alignment, we managed to bring overhead to an acceptable
5% on a 16-core machine. Nevertheless, even though we managed
to achieve respectable overhead, the prospect of 48 and 64-core
systems — or massively multithreaded systems such as the Cray
XMT — suggests that global counters are likely to be an important
weakness. A monitoring scheme should not itself cause significant
amounts of new contention.

The second problem is even more fundamental. Even assuming
low-overhead monitoring, we found that the lock-contention blame
of this approach was still spread too diffusely for complex applica-
tions. While the approach of Section 2 attributes blame to victims,
this approach targets suspects. While it is an improvement to at-
tribute the idleness of lock-waiting threads to lock-working threads,
the results can be inaccurate if most of the idling threads are wait-
ing on one critical lock. For similar reasons, it can be misleading to
attribute the idleness of ‘cond’-waiting threads to all other working
threads, even though any one could in theory potentially signal the
condition variable. Consequently, for complex programs, we found
blame to be too diluted because it is accumulated by actively work-
ing threads that have no relation to a source of contention.

4. Communicating blame directly to lock-holders
4.1 Blame shifting: A distributed and precise strategy
To pinpoint the cause of lock contention in its context, while avoid-
ing the problems we have encountered thus far, we developed a
fully distributed scheme that we call blame shifting to communi-
cate blame for contention directly to lock-holders. Because it uses
a fully distributed strategy and only lightweight instrumentation of
synchronization primitives, it incurs very low overhead.

The key idea is to use a lock as a communication channel for di-
recting blame. Consider the case of spin locks where threads busy-
wait while contending for a lock. While profiling an application
using sampling, threads contending for locks will receive samples
while idling. When a thread takes a sample while waiting for a lock,
we use an atomic add to accumulate that idleness in a counter as-
sociated with the lock. Then, when a thread that possesses a lock
releases it, that thread blames itself for all of the idleness that ac-
cumulated while it held the lock. To accept blame, when a thread
releases a lock, it atomically swaps zero into the lock’s associated
idleness counter. If the result of the swap is a non-zero value, then
other threads must have contended for that lock while the lock-
holder was working. So, the thread holding the lock attributes that
idleness to the context of its lock release operation.

Although one might desire to attribute idleness to the lock ac-
quisition point, using the release point provides a key benefit. Typ-
ically, there are several points in an execution where certain lock
acquisitions are uncontested. Consequently, there are likely to be
many lock release points where it is not necessary to incur the cost
of unwinding the call stack to attribute zero blame. In contrast, at-
tributing idleness to a lock acquisition point would require eager
unwinds since that context may never again exist. Moreover, if a
lock is contested only a short time, then it is unlikely to have a
sample of idleness attributed to it. To see this, note that whereas a
thread may acquire 100s-of-thousands of locks per second, it is suf-
ficient to use sample rates on the order of 100-1000 samples/second
for most programs.

4.2 Blame shifting in action
To implement blame shifting, it is necessary 1) to have thread-local
data to indicate when a thread is not working and 2) to create a
shared piece of monitoring state for each lock. As the former has
been discussed in prior schemes, we focus on the latter.

4.2.1 In-band vs. out-of-band state
The first question is how to create the shared monitoring state.
There are two possibilities: within the existing lock structure (in-
band) or outside of it (out-of-band).

An in-band approach requires storing additional information
within the existing lock. In particular, blame shifting requires a
shared idleness counter for each lock. In general, reinterpreting bits
within a data structure to add an extra field is difficult and at the
very least requires overriding every routine that might access that
data. Pthread’s spin locks are simply 32-bit integers, even on 64-
bit platforms. An in-band approach requires unevenly dividing this
space into two fields to have enough room for the idleness counter.
It also requires that the idleness field never overflow. It is also worth
observing that both fields will be accessed by different threads and
will be the target of atomic operations, even though neither is the
natural architectural word size.

A second option is to create a special library and include file
to implement an extended representation for a lock that includes
a counter for blame shifting. This approach suffers from the dis-
advantage that one would need to recompile the application to use
the larger lock structure. Because one of our underlying goals is
to develop techniques that can be used to monitor unmodified pro-
grams, we consider such an option an approach of last resort. Of
course, one could modify a system’s standard threading library to
use the extended representation for a lock; however, such an ap-
proach would not be portable.

A third approach is to allocate additional state associated with
a lock in out-of-band data. A benefit of this approach over the in-
band approach is that it is a more flexible solution; for example,
additional monitoring state can easily be added. We implemented
this approach.

4.2.2 Allocating out-of-band state
We now consider when to allocate this additional out-of-band state.
At first glance, it might appear straightforward to allocate the out-
of-band state when a lock is initialized with pthread_{mutex,
spin}_init. This would be attractive since one could assume a
race-free context. However, this approach is fraught with difficulty.
First, while it is possible to override every instance of a Pthreads
call, some of these overrides may occur in contexts in which a pro-
filer cannot manage the out-of-band state. For example, Pthreads
locks are often used very early during execution within glibc and
during initialization of shared libraries and static constructors.

Second, supporting out-of-band lock state requires managing
dynamic allocation and deallocation of state instances. In many
programs, components of dynamic data structures are decorated
with locks (e.g., nodes in a tree). In such cases, a lock is destroyed
when a node is freed; thus, managing the destruction of lock state
is an essential part of an overall strategy for dynamic allocation.
This shows that allocating out-of-band state for monitoring locks
at the time of lock initialization requires the ability to dynamically
allocate lock state and manage a per-thread free list4 to which lock
states could be appended when they are no longer needed. (Simi-
larly, locks may be used after the application exits and monitoring
tool shuts down but before the process has completely retired.) Pro-
viding both of these capabilities very early in an execution before
the profiler is initialized is problematic.

Therefore, the shared lock state must in general be created on
demand, i.e., when the performance tool first sees an attempt at
locking (which may be different than the first attempt at locking).
This implies the state is created in a context where other lock
operations might be executed concurrently.

4 Using a per-thread free list avoids contention for the free list.

4.2.3 Accessing out-of-band state
On each call to a Pthreads locking routine, it is necessary to obtain
the associated out-of-band state. There are two possibilities for
accessing this data. The first option is to replace the contents of the
lock itself with a pointer to a monitored lock. The second option
is to write a function to quickly map between a pointer to a lock
(which is unique) and its associated monitoring state.

The primary advantage of the first scheme is that finding a
monitored lock can be an extremely fast constant-time operation.
The primary disadvantage is that, because a performance tool might
not see a lock’s initialization, a native lock must be converted to a
monitored lock within a race-sensitive context. For example, one
thread may attempt to convert a lock into a monitored lock while
that lock is currently held by a second thread and while a third
thread is attempting to acquire that same lock. This implies that
there must a concurrency protocol between the locking routines and
the conversion routine.

The second option requires a data structure that supports both
fast lookups and high concurrency. Because complex applications
have a high rate of lock acquisitions, it is necessary to eschew
coarse-grain locking. One potentially easy way to support high
concurrency at the expense of extra memory is to make per-thread
lookups faster by using an additional per-thread mapping data
structure such as a splay tree. In other words, many lookups benefit
from thread-local caches.

We initially tried the second approach because of its easier im-
plementation. However, even using a local-global lookup to reduce
contention on a centralized data structure — a balanced tree which
itself used a sophisticated reader-writer lock — we were not sat-
isfied with the resulting profiler overhead for programs that per-
formed a high rate of lock acquisitions. Consequently, we devel-
oped protocols to support installing and managing monitored locks.

4.3 Dual-representation locks
To support fast accesses to shared lock state and to sidestep a
difficult refactoring of profiler initialization to enable out-of-band
monitored lock states to be used very early during execution, we
opted to use a dual representation for locks. In prior work, Bacon
et al. used a dual representation for object locks in Java [3], though
for different reasons. We discuss this in more detail in Section 6.

Before profiler initialization, a lock is simply represented by a
(32-bit) pthread_spinlock_t. Lock operations that occur before
profiler initialization use this native lock representation. Once the
profiler state is initialized, any lock, trylock, or unlock operation
converts the native lock, in demand-driven fashion, to point to
a monitored lock. The monitored lock includes the extra state
needed to attribute contention. Once a lock has been converted
into a monitored lock, it will remain a monitored lock until it is
destroyed.5 On each subsequent lock operation, the representation
is examined, the monitored lock is obtained, and the operation
proceeds using the monitored representation.

After profiler initialization, all lock, trylock, or unlock opera-
tions request a native lock’s monitored lock by calling demand
mon lock, shown in Algorithm 2. If the lock already represents a
monitored lock, the routine simply accesses the associated moni-
tored lock by reinterpreting the bits of the native lock. If a native
lock is not yet a monitored lock, then the routine initiates a protocol
for converting the native lock (of type pthread_spinlock_t) into
a monitored lock. The protocol first allocates a new monitored lock

5 Bacon et al. use an analogous approach for Java locks. Once they inflate
a Java lock to a “fat” out-of-band representation, the lock remains inflated
for its remaining life.

Algorithm 2: The protocol for converting a native lock into
an out-of-band lock in demand-driven fashion.

1 typedef struct mon lock { // a monitored lock
2 pthread spinlock t lock; // typedef’d as ‘‘volatile int’’
3 long idleness;
4 } mon lock t;

5 mon lock t* demand mon lock(pthread spinlock t* lock) {
6 if (!is mon lock(*lock)) {
7 mon lock t* mlock = alloc mon lock();
8 int newVal = make mon lock ptr(mlock);

9 bool didSwap = false;
10 while (true) {
11 int curVal = *lock;
12 if (is mon lock(curVal)) break;

13 mlock−>lock = curVal;
14 didSwap = (CAS(lock, curVal, newVal) == curVal);
15 if (didSwap) break;
16 }
17 if (!didSwap) free mon lock(mlock);
18 }
19 return get mon lock(*lock);
20 }

and computes a ‘pointer’ to install in the native lock.6 Then, it en-
ters the compare-and-swap (CAS) loop beginning on line 10. The
loop obtains the current value of lock and ensures that since the
test on line 6, lock is still a native lock. In that case, the protocol
initializes a monitored lock with lock’s current value and attempts
to atomically install a pointer to the monitored lock with the CAS
on line 14. The loop exits when the CAS succeeds or some other
thread converts the lock. If the latter occurs, the newly allocated
monitored lock is reclaimed by placing it on a thread-local free list.

Algorithms 3–5 show the lock, trylock, and unlock protocols
we use on these dual-representation locks. The algorithms are op-
timized for the typical case: a pthread_spinlock_t contains a
pointer to a monitored lock.

The lock operation shown in Algorithm 3 works as follows.
First it tests to see if the native lock has been overlaid with a pointer
to a monitored lock state (line 4). If so, it extracts the pointer
and then attempts to acquire the lock with a simple test-and-test-
and-set protocol. While the lock word of the monitored lock is
found to be in the LOCKED state, it continues to spin (line 9).
When this condition is no longer true, some other thread must have
set the lock word to its UNLOCKED state. A swap operation is
used to atomically set the value of the lock word to LOCKED
and recover its prior value. If the lock was UNLOCKED when the
swap occurred, the lock acquisition is complete and the protocol
returns. Otherwise, another thread acquired the lock. In that case,
the protocol returns to the spin-wait loop where it again delays until
the lock word is no longer LOCKED.

If a lock operation initially finds that lock does not point to a
monitored lock, it enters a protocol to acquire the lock using the
native representation. As with acquisition of a monitored lock, the
protocol enters a loop that spin-waits for the lock representation to

6 A pthread_spinlock_t is 32 bits, even for 64-bit programs. In a pro-
gram running in 64-bit mode, this is not long enough to contain a full
pointer. To address this problem, we allocate a segment for locks. We rep-
resent a lock pointer in a pthread_spinlock_t as an offset from a base
address for the segment of monitored locks. For simplicity, in the rest of the
paper we omit the quotation marks around ‘pointer’.

Algorithm 3: Lock a dual-representation lock.

1 const int UNLOCKED = 1, LOCKED = 0;

2 int pthread spin lock(pthread spinlock t* lock) {
3 while (true) {
4 if (is mon lock(*lock)) {
5 // acquire a monitored lock
6 mon lock t* mlock = get mon lock(*lock);
7 lock = &mlock−>lock;
8 while (true) {
9 while (*lock == LOCKED);

10 if (swap(lock, LOCKED) == UNLOCKED)
11 return 0; // success
12 }
13 }
14 // acquire a native unmonitored lock
15 while (*lock == LOCKED);
16 if (CAS(lock, UNLOCKED, LOCKED) == UNLOCKED)
17 return 0; // success
18 }
19 return 1; // failure
20 }

no longer be in the LOCKED state (line 15). When attempting to
acquire an unmonitored lock, there are two conditions that might
cause one to exit this spin-wait: another thread may have set the
lock word to unlocked, or the profiler may have been initialized
and another thread may have exchanged the lock word representa-
tion to point to a monitored lock. If the lock is available and in the
UNLOCKED state, the subsequent compare-and-swap (CAS) op-
eration will find it in the UNLOCKED state, set it to LOCKED, and
return that it was in the UNLOCKED state. At this point the pro-
tocol will terminate after successfully acquiring the lock using the
native representation. It is noteworthy that at this point in the pro-
tocol, it is necessary to use a CAS rather than a swap as used in the
protocol for monitored locks. The reason is simple: the representa-
tion may have changed since we last inspected the lock word. If the
lock word has been promoted to a pointer, one cannot obliviously
overwrite it with LOCKED using a swap; instead, we condition-
ally overwrite it only if it is a native lock word in the UNLOCKED
state. If the CAS fails, we return to the top of the outermost loop,
check if the representation has changed, and execute the appro-
priate branch of the protocol to repeat the attempt to acquire the
lock. An important feature of the protocol is that both the spin-wait
and the CAS for the unmonitored lock representation can tolerate
the representation being asynchronously switched to its monitored
form. That would not be the case if line 15 read while (*lock
!= UNLOCKED) or line 16 used swap rather than CAS.

The trylock operation shown in Algorithm 4 similarly is de-
signed to cope with our dual representation. If the lock word points
to a monitored lock, it extracts the pointer and then attempts to ac-
quire the lock with simple swap (line 7). Depending upon whether
swap returns UNLOCKED, trylock succeeds or fails. Since a lock
will never revert from a monitored lock pointer to a native repre-
sentation until the lock is destroyed, if a lock is found to be using
a monitored representation, it is safe to acquire it using a swap. If
initially the lock word is not a pointer to out-of-band state, trylock
attempts to acquire the lock in native form. In this case, the proto-
col uses a CAS operation (line 12) since the lock word may asyn-
chronously change to a monitored lock pointer. If the lock word
is still using the native representation (i.e., with value LOCKED
or UNLOCKED), the trylock returns immediately with the appro-

Algorithm 4: Trylock on a dual-representation lock.

1 int pthread spin trylock(pthread spinlock t* lock) {
2 while (true) {
3 if (is mon lock(*lock)) {
4 // trylock a monitored lock
5 mon lock t* mlock = get mon lock(*lock);
6 lock = &mlock−>lock;
7 int prev = swap(lock, LOCKED);
8 return ((prev == UNLOCKED) ?
9 0 /* success */ : 1 /* failure */);

10 }
11 // trylock a native unmonitored lock
12 int prev = CAS(lock, UNLOCKED, LOCKED);
13 if (prev == UNLOCKED)
14 return 0; // success
15 else if (prev == LOCKED)
16 return 1; // failure
17 }
18 }

Algorithm 5: Unlock a dual-representation lock.

1 int pthread spin unlock(pthread spinlock t* lock) {
2 while (true) {
3 int lockval = *lock;
4 if (is mon lock(lockval)) {
5 // release a monitored lock
6 mon lock t* mlock = get mon lock(lockval);
7 mlock−>lock = UNLOCKED;
8 return 0; // success
9 }

10 // release a native unmonitored lock
11 if (CAS(lock, LOCKED, UNLOCKED) == LOCKED)
12 return 0; // success
13 }
14 return 1; // failure
15 }

priate result. If the representation was asynchronously converted
to a monitored lock pointer, execution will continue at the top the
while loop on line 2, enter the protocol to try to acquire a mon-
itored lock, and complete in a few operations. Note that that al-
though this protocol contains a while loop, the loop will execute
at most two iterations, resulting in a fixed number of instructions
and leaving the trylock protocol non-blocking.

While the use of CAS in these dual-representation protocols is
potentially more costly than simply using a swap to try to acquire
a native lock, or using a simple write to unlock, this will have
little impact on the run time cost of the locking protocol. These
CAS operations execute only before profiler initialization. Since
profiler initialization happens relatively early, in the typical case,
the expected additional cost of the dual-representation in these
protocols is limited to testing the lock word for a monitored lock
pointer and converting that pointer into an actual pointer to the
monitored lock.

The unlock operation shown in Algorithm 5 is quite similar to
trylock in its handling for the dual representation. If the lock is
found to point to a monitored lock, it simply sets the monitored
lock’s lock word to UNLOCKED. Otherwise, it attempts to unlock

the lock by using a CAS (line 11) to update the lock word from
LOCKED to UNLOCKED. If this fails, the lock must have been
asynchronously converted to a monitored lock pointer. A second
pass around the while loop (line 2) will release the monitored lock.
Although this protocol contains a while loop, the loop will execute
at most two iterations, resulting in a fixed number of instructions
and leaving the unlock protocol non-blocking. (This algorithm
assumes a correct locking discipline).

4.4 Blocking (sleep-waiting)
Recall that when Pthreads mutex locks sleep-wait, they receive no
samples. To implement blame shifting for sleep-waiting, we used
a sampling strategy similar to that in Section 2.2. That is, on every
nth blocking call we time the thread’s idleness and store it in the
associated monitored lock’s idleness counter. If the idleness count
is non-zero when a thread releases the lock, it gathers the calling
context. In principle this strategy should also work for condition
variable waiting, but we have not implemented it.

4.5 Hints for developers
Many subtle implementation issues arise when overriding various
Pthreads library functions for profiling. For our profiling tools to be
broadly applicable, each issue needs to be solved generically in a
way that induces low run time overhead. In some cases, the nature
of interactions between target programs, run time systems, and our
profiler forced more complicated solutions than originally desired.

For instance, overriding pthread_mutex_lock and perform-
ing any non-trivial operation involves subtle complexities. Many
operations in thread-safe run-time libraries, such as malloc or
dlsym, directly or indirectly call pthread_mutex_lock in at least
some circumstances. The former would commonly be used to al-
locate out-of-band memory for monitoring locks; the latter for
preparing the override for pthread_mutex_lock. To allocate dy-
namic memory, we use mmap-ed regions. To prepare the pthread_
mutex_lock override, we use the special symbol __pthread_
mutex_lock exported in the Linux implementation of Pthreads.

Although only a subset of Pthreads functions need to be
wrapped, care must be taken to prevent inconsistent versions. Prob-
lems of this sort come in two flavors. First, one might wrap a
Pthreads function that sets values visible to other functions that
are not wrapped. One must choose the set of functions to wrap
carefully to ensure that all functions sharing data have a consistent
notion of appropriate states. Second, intra-library calls have to see
a consistent world. In particular, calls that use hidden interfaces
within libraries that cannot be overridden must be handled.

Finally, most unwinders — including HPCTOOLKIT’s — are
not designed to be recursive. Since our strategy uses both sampling-
based call path profiling and synchronous unwinds of the call stack
at a lock release point, it is important to specify what happens
if an asynchronous sampling trigger occurs during a synchronous
unwind. The simplest way to prevent interference is to prevent
asynchronous samples during any unwind.

5. Case Studies
To show the effectiveness of blame shifting, we describe our ex-
perience applying it to three multithreaded applications with in-
teresting locking and scheduling patterns. Our goal is to provide
evidence that our method yields insight into non-trivial codes. In
doing this, we distinguish between obtaining and applying insight.
This is an important distinction because given an understanding of
lock contention that includes a quantitative measure of the problem
(insight), one might either resolve the problem or determine that a
resolution is too costly (different applications). Because of the ef-
fort that would be involved in resolving the problems we identify,
these studies focus on obtaining and not applying insight.

All experiments were performed on a Dell M905 blade running
CentOS 5.2 and with four quad-core AMD 2.2 GHz Opterons
(8354) and 48 GB main memory.

5.1 MADNESS
The first application we consider is MADNESS [16], a quantum
chemistry application that makes extensive use of locking. MAD-
NESS is designed to scale well both in SMP environments and on
petascale clusters with multicore nodes. We focus on SMP exe-
cutions here, but note that node-based performance is also critical
for efficient performance on petascale clusters. MADNESS uses its
own dynamic work scheduler based on a centralized queue. Worker
threads create tasks (futures), which are pushed the queue. As nec-
essary, workers pop tasks from the queue to obtain work. Among
other things, MADNESS uses locks to manage access to the queue.

To obtain a sense of MADNESS’s scaling losses, we gathered
elapsed time for 4 and 16-core executions using the same input
(strong scaling, averaged over five runs). While a 4-core run com-
pleted in 1150 seconds, a 16-core run took 516 seconds, an im-
provement of only a factor of 2.2. MADNESS’ authors were aware
of scaling losses but were unsure of the precise cause. Ignoring
architectural concerns such as memory bandwidth, an obvious sus-
pect is lock contention from managing the centralized task queue.
However, it is not at all easy to show this for two reasons. First, un-
derstanding the different sources of lock contention in MADNESS
is difficult because of its complex structure. Futures are imple-
mented with templates. Typically, locks are implicitly acquired au-
tomatically through object creation and destruction. Furthermore,
most critical sections are not straight-line code but a chain of tem-
plated method calls, heavily optimized by the compiler. Second,
any monitoring tool must manage locks very efficiently to have
low overhead for MADNESS. During a single 16-core execution,
MADNESS used 65M distinct locks, had a maximum of 340K live
locks, and performed an average of 30K lock acquisitions per sec-
ond per thread. Finally, it is worth noting that MADNESS’s authors
had already spent considerable time experimenting with different
implementation parameters.

We used our blame shifting strategy to measure lock contention
on a version of MADNESS using spin locks. We used a sampling
period of 5 ms to yield an average sampling rate of 200 sam-
ples/second. Curiously, during profiling, the execution time actu-
ally slightly decreased from 516s to 508s (averaged over 5 runs
with no significant variability). We are not sure of the precise rea-
son but note that this is an anomaly. Typically, our profiling over-
head is positive, but less than 5%.

Figure 1 presents one view of the aggregated results displayed
by our presentation tool. The view has three main components. The
navigation pane (lower left sub-pane) shows a top-down view of
the calling context tree, zoomed to focus on a portion of one call
path. The call path is actually a fusion of dynamic calling contexts
and the static context information such as loops and inlined frames.
The selected line in the navigation pane highlights an instance of
ThreadPool::add whose corresponding source code is shown in
the source pane (top sub-pane). Each entry in the navigation pane
is associated with metric values in the metric pane to the right. Two
metrics are visible: ‘% idleness (all/I)’ and ‘% idleness (all/E)’.
Both metrics represent idleness as a percentage of total effort (giv-
ing the ‘%’ qualifier) and summed over all threads (yielding the
‘all’ qualifier). (Recall that effort is the sum of work and idleness.)
The former metric shows inclusive (‘I’) values, or values that are
inclusive of an entry’s children. The latter shows exclusive (‘E’)
values that exclude its children. In the metric columns, metric val-
ues are shown in scientific notation. Note that because these par-
ticular metrics are percentages, the values in scientific notation are
actually percents. The values formatted as percentages on the right

Figure 1. A Calling Context (top-down) view of MADNESS’s moldft.

side of a column give an entry’s proportion of the total idleness (as
opposed to total effort).

The call path in the navigation pane is the hot call path with
respect to the former metric and was expanded automatically. It is
actually a fusion of dynamic calling contexts and static contextual
information such as loops and inlined frames. The highlighted line
in the navigation pane of Figure 1 indicates that 7.35% (scientific
notation) of the total effort of the execution was spent in idleness
at this context. Three lines below, we see the call to pthread_
spin_unlock, exactly where blame shifting attributed the idleness
due to lock contention. Within this call, both the inclusive and
exclusive idleness metrics are identical, indicating that the call
to pthread_spin_unlock accounts for all the idleness in this
context.

This call path shows that there is lock contention associated with
adding tasks to the centralized thread queue via ThreadPool::
add. However, the remaining 68.8% of the idleness arises in other
calling contexts. To avoid the need to search for other contexts in
which there may be lock contention caused by ThreadPool::add,
we turn to a bottom-up “Callers View” in Figure 2. If the top-down
view looks ‘down’ the call chain, the bottom-up view looks ‘up’
to a procedure’s callers. At the first level, the bottom-up view lists
all the procedures in the program, rank-ordered according to the
selected metric. Bottom-up metrics are computed by apportioning
the total costs of a procedure to its calling context.

The first thing we observe is the very top line which gives ag-
gregate values for the various metrics. (This line was not visible
in Figure 1 because of scrolling.) We immediately see from the

column labeled ‘% idleness (all/E)’ that 23.5% of the execution’s
total effort consisted of lock contention. The column labeled ‘idle-
ness (all/E)’ gives the absolute value of idleness (in microseconds):
1.57 × 109µs. We should note that this value does not reflect all
the idleness in the program. Because Pthreads does not provide a
spin-based condition variable, MADNESS implements its own. In
principle, we could instrument MADNESS itself. Since this is not
the point of our work, our MADNESS results only measure regular
lock contention and ignore any waiting at a condition variable crit-
ical section. However, we obtain an accurate measure of Pthreads
spin lock contention.

When we automatically expand the hot path relative to the met-
ric ‘% idleness (all/E)’, we see something similar to the screen
shot in Figure 2. This view shows how all the idleness attributed
to pthread_spin_unlock is apportioned to its callers (in their
context). Just above the selected line in the navigation pane is
ThreadPool::add. Its associated idleness metrics show that it is
responsible for 75.6% of the locking contention, accounting for
17.7% of the execution’s total effort. This line not only confirms
that adding tasks to a centralized queue is problematic, but quanti-
fies its effect on idleness.

To see the effects of lock contention by context, we look up
the call chain to the callers of ThreadPool::add. The selected
line and its siblings (some of which are not shown) lists those
callers (for this particular callee context). Since sibling entries in
the navigation pane are sorted relative to their exclusive idleness
(the selected metric), we can easily examine the handful of impor-
tant ones. Doing this shows that most of the locking contention

Figure 2. A Callers (bottom-up) view of MADNESS’s moldft.

(67.5% of the total idleness) derives from creating Futures. The
idleness costs are spread across distinct templates — not distinct
instantiations — that manage Futures with different numbers of
arguments. The selected line shows the templated add function for a
Future with three arguments. An approach using distributed work
queues and work stealing would likely significantly reduce lock
contention.

Our original scaling experiment shows that we have not ac-
counted for all scaling losses. There are at least two sources. First,
the fact that memory bandwidth does not scale linearly with the
number of cores is likely to be a factor. Second, besides missing
idleness due to condition variable waiting, we cannot effectively
monitor the non-idle overhead of creating and managing tasks. In
prior work, we precisely computed overhead values for Cilk by
modifying the Cilk compiler to distinguish between the user code
and the parallel overhead [23]. While we have adopted this ap-
proach to identify the non-idle overhead of Pthreads routines, that
overhead is negligible. The approach does not directly translate to
MADNESS where there is no formal separation between the task
management and the user code.

In hindsight, it is not surprising that a centralized queue pro-
tected by locks could introduce lock contention. However, it would
be an error to conclude that these results are trivial. To see this,
consider the question of how severe lock contention is on 8 cores.
It turns out that the total lock contention on 8 cores is 1-2% be-
cause MADNESS’ developers had optimized for this case. How-
ever, MADNESS’ developers had no clear answers to questions
like: How severe is lock contention for a particular execution? Do

these executions fail to scale because of lock contention or some
other reason? Is lock contention occurring primarily at the central-
ized queue or is it more evenly spread among other lock acquisi-
tions? Our results help answer these questions.

5.2 UTS
The second case study is a Pthreads implementation of the Unbal-
anced Tree Search (UTS) benchmark [20]. UTS was designed to
evaluate the performance and ease of programming parallel ap-
plications that require dynamic load balancing. UTS builds and
searches trees where each vertex unpredictably either has no chil-
dren or millions of descendants. The number of active vertexes
varies between a few and tens-of-thousands during the execution
(depending on the starting parameters and current depth).

UTS uses a work-stealing scheduler where each worker thread
maintains a queue with two pieces, a local section that can be
accessed without locks and a shared portion from which work can
be stolen and which is protected by locks. A lock is acquired when
work is moved from the local to the shared portion of a queue.

We profiled UTS and examined the resulting work and idleness
metrics (microseconds) aggregated across all 16 threads. It was
immediately apparent that although all cores were busy throughout
the execution, they were only doing useful work about 40% of
the time. With the idleness metric, we immediately pinpointed the
source of idleness to contention for locks protecting the shared
queues. About 72% of the idleness derived from contexts where
new ‘stealable’ work was pushed onto the shared queues. Almost
all of the remaining idleness (27.5%) was attributed to successful

steals of work by otherwise idle threads. Thus, a majority of this
execution time was spent contending for the privilege of either
providing or extracting work.

5.3 SSCA #2
The last case study is from the Scalable Synthetic Compact Ap-
plication (SSCA) benchmark suite [9]. SSCA #2 was designed to
be a hard-to-parallelize, compute-intensive analysis program that
stresses memory access using integer and character operations.

We profiled an implementation of SSCA #2 using Pthreads writ-
ten by Bader and Madduri [4]. Interestingly, idleness is very un-
evenly distributed across threads. In particular, 99.9% of the idle-
ness of the first thread derives from a coarse-grained lock protect-
ing an update to the graph. Having one lock per graph vertex rather
than one graph-wide lock would reduce contention for that critical
section and could greatly speed the initialization phase. The post-
initialization compute kernels contained no significant sources of
lock contention.

6. Related Work
Performance tools. Intel’s Thread Profiler [5] (for Windows) has
two ways to analyze multithreaded performance. First, it provides
a measure of a routine’s effective parallelism, a useful metric that
is similar to Quartz [2] and the strategy of Hansen et al. [15]. Sec-
ond, and more related to our work, it instruments synchronization
objects with timers to further classify a thread’s execution by its
effects on other threads. Thread Profiler makes use of this infor-
mation to 1) qualify a thread’s execution and 2) to highlight syn-
chronization objects that accumulate blocking time. To classify a
thread’s execution, Thread Profiler distinguishes between interac-
tion effects such as cruise, impact and blocking time. Cruise time
is time that a thread does not delay the next thread on the critical
path while impact time is the opposite. If a thread on the critical
path waits for some external event, it accumulates blocking time.
While this is useful information, it requires substantial overhead to
collect.

To highlight synchronization objects, Thread Profiler reports
how much time was spent waiting for a particular object and the
utilization of the system during that wait time [7]. It also shows
the creation calling context of the synchronization object. If locks
are statically allocated and have long lifetimes, this information
can be very effective. However, additional information is needed
if there is no direct line of sight from idleness at the lock to
the source of contention. For example, only certain threads may
be responsible for contention, locks may be dynamically created
and destroyed (e.g., linked data structures), or contention may be
related to context. Our approach is superior to that of Thread
Profiler in two ways. First, we ‘blame’ lock contention on the
offending thread’s context rather than aggregating wait time at a
synchronization object; this directs an analyst to the source of the
problem. Second, our approach is able to deliver this insight with
very low monitoring overhead (< 5%).

Several current tools detect lock contention in Java. IBM’s Lock
Analyzer for Java [17] computes a metric that reflects the num-
ber of delayed lock acquisitions as a percentage of total lock ac-
quisitions. Sun’s JConsole [8] helps identify contention by timing
idle and by counting the number of delayed lock acquisitions. Like
Intel’s Thread Profiler, these tools attribute these metrics to locks
themselves rather than to calling contexts and thus would fail to
provide insight for an application like MADNESS.

Dual-representation locks. Bacon et al. use a dual representation
for object locks in Java [3]. They use a 24-bit field in a Java object’s
header to implement a “thin lock” for objects that (a) are not subject
to contention, (b) do not have wait, notify, or notifyAll operations

performed upon them, and (c) are not locked to a nesting depth of
more than 255. Objects that do not meet these criteria have their
locks implemented as out-of-band “fat” locks. As with our scheme,
once locks are converted to an out-of-band representation, they
remain in that state. Bacon et al. avoid the need for a compare-and-
swap in unlock because in their protocol, once a thread acquires a
lock, no other thread may modify the lock word. In our approach, a
lock may be changed to its out-of-band representation at any time.
Without this, we would be unable to attribute contention to any lock
that was acquired before profiling was initiated.

Contention managers for STM. In our work, we use auxiliary
state associated with a lock to blame idleness resulting from con-
tention for that lock on the lock holder and attribute the idleness to
the calling context of the lock holder’s unlock operation. Some con-
tention managers for Software Transactional Memory (STM) use
auxiliary state associated with transactional objects to notice and
manage contention on the fly. For instance, the Eruption contention
manager by Scherer and Scott [22] uses data associated with trans-
actional objects not only to observe contention, but also to transfer
priority from a blocked transaction to the transaction it is blocked
behind. At an abstract level, both our profiler and the Eruption con-
tention manager use state associated with synchronization objects
to communicate information about contention between competing
threads.

Hardware support for attributing stalls due to contention. The
Alpha 21264’s ProfileMe hardware support for instruction-based
sampling [10] measures and quantifies the impact of contention for
registers or execution units by measuring stalls while waiting for
resources. While ProfileMe identifies contention and quantifies its
impact, it attributes stall cycles to the victim of a stall rather than
the instruction on which it is waiting. This strategy of attributing
contention to waiting instructions is similar in effect to the strategy
we describe in Section 2, which directly attributes contention to
waiting threads.

7. Conclusions
Being able to quantify and attribute lock contention is important for
understanding where a multithreaded program needs improvement.

We described three different approaches for quantifying lock
contention that progressed from 1) attributing a thread’s idleness to
itself in the context in which it is idling (the victim); 2) then to the
set of threads holding locks at the time (the suspects); and finally 3)
to the thread holding the target lock (the perpetrator). Three under-
lying principles drove the development of our final blame shifting
strategy. First, we strove to obtain a high degree of precision and
detail in our measurements. Second, rather than sacrificing high
overhead to obtain high precision, we developed extremely low
overhead profiling methods. When using reasonable sampling rates
(100-1000 samples/second), our overhead is typically < 5%, even
for an application that uses 65M distinct locks and an average of
30K lock acquisitions per second per thread. To prevent profiling
itself from introducing serialization, we used a minimal amount
of shared state and accessed it very rapidly. By using a sampling-
based profiler that recovers call paths by unwinding a call stack,
we were able to attribute idleness to its full static and dynamic
context while maintaining extremely low overhead. We also used
a form of sampling to amortize the cost of heavyweight instrumen-
tation. Third, our aim was to develop a general method that enables
tools to monitor unmodified programs. Doing this required solv-
ing subtle but complex problems such as how to maintain a dual-
representation lock.

For future work, we would like to increase the precision of our
results by recording the number of lock operations within its calling
context. This would allow us to distinguish between a few highly

contested long waits and many moderately contested short waits. A
low-overhead way of doing this is by collecting return counts [13].

Our profiler is based on the general principle of using shared
state to communicate information about performance losses due to
resource contention between competitors. While in this paper we
apply this principle to attribute spin-waiting for a lock back to the
calling context of the lock holder, we can imagine using variants of
our strategy for other purposes. As one example, this same strategy
could be used for reporting lock contention in multithreaded lan-
guages that provide locks such as Cilk. As another, in a lock-based
software transactional memory system, transactions acquire locks
associated with objects that they wish to modify transactionally.
When another transaction needs an object that is already locked,
a contention manager is invoked to decide which transaction to
abort. Rather than just using using auxiliary object state to commu-
nicate information about contention and guide a contention man-
ager’s handling of competing transactional operations, our profiler
could augment a transactional object with information that would
enable us to attribute contention back to the transaction that holds
an object lock and the calling context of the transaction.

Acknowledgments
Development of the HPCTOOLKIT performance tools is supported
by the Department of Energy’s Office of Science under cooperative
agreements DE-FC02-07ER25800 and DE-FC02-06ER25762.

We thank Robert Fowler for focusing our attention on MAD-
NESS, Robert Harrison for helping us with his MADNESS code,
and William Scherer for reminding us of Bacon’s prior work on
dual-representation locks and pointing out the similarity to STM
contention managers. HPCTOOLKIT would not exist without the
contributions of the other project members: Laksono Adhianto,
Michael Fagan, Mark Krentel, and Gabriel Marin.

References
[1] T. Anderson. The performance of spin lock alternatives for shared-

memory multiprocessors. IEEE Transactions on Parallel Distributed
Systems, 1(1):6–16, 1990.

[2] T. E. Anderson and E. D. Lazowska. Quartz: a tool for tuning parallel
program performance. SIGMETRICS Perform. Eval. Rev., 18(1):115–
125, 1990.

[3] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks:
featherweight synchronization for Java. In Proc. of the 1998 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 258–268, New York, NY, USA, 1998. ACM.

[4] D. A. Bader and K. Madduri. Design and implementation of the HPCS
graph analysis benchmark on symmetric multiprocessors. Lecture
Notes in Computer Science, 3769/2005:465–476, 2005.

[5] C. P. Breshears. Using Intel Thread Profiler for Win32 threads:
Philosophy and theory. http://software.intel.com/en-us/
articles/using-intel-thread-profiler-for-win32-
threads-philosophy-and-theory, August 2007.

[6] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[7] S. Cepeda. Performance analysis and Intel Parallel Amplifier. http:
//www.ddj.com/architect/217700473, May 27, 2009.

[8] M. Chung. Monitoring and managing Java SE 6 platform applications.
http://java.sun.com/developer/technicalArticles/
J2SE/monitoring, August 2006.

[9] DARPA High Productivity Computing Program. Scal-
able Synthetic Compact Application benchmarks. http:
//www.highproductivity.org/SSCABmks.htm.

[10] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos.
ProfileMe: Hardware support for instruction-level profiling on out-of-
order processors. In Proc. of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 292–302, Washington, DC,
USA, 1997. IEEE Computer Society.

[11] D. Dice and N. Shavit. Understanding tradeoffs in software trans-
actional memory. In Proc. of the International Symposium on Code
Generation and Optimization, pages 21–33, Washington, DC, USA,
2007. IEEE Computer Society.

[12] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. In Proc. of the 1998 ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, pages 212–223, Montreal, Quebec, Canada, June 1998.

[13] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call
path profiling of unmodified, optimized code. In Proc. of the 19th
Annual International Conference on Supercomputing, pages 81–90,
New York, NY, USA, 2005. ACM Press.

[14] R. J. Hall. Call path profiling. In Proc. of the 14th international
Conference on Software engineering, pages 296–306, New York, NY,
USA, 1992. ACM Press.

[15] G. J. Hansen, C. A. Linthicum, and G. Brooks. Experience with
a performance analyzer for multithreaded applications. In Proc. of
the 1990 ACM/IEEE Conference on Supercomputing, pages 124–131,
Washington, DC, USA, 1990. IEEE Computer Society.

[16] R. J. Harrison, G. I. Fann, T. Yanai, and G. Beylkin. Multiresolution
quantum chemistry in multiwavelet bases. Lecture Notes in Computer
Science, 2660/2003:103–110, 2003.

[17] IBM. IBM lock analyzer for Java. http://www.alphaworks.ibm.
com/tech/jla.

[18] J. Larus and C. Kozyrakis. Transactional memory. Commun. ACM,
51(7):80–88, 2008.

[19] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Transactions on
Computer Systems, 9(1):21–65, 1991.

[20] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W.
Tseng. UTS: An unbalanced tree search benchmark. Lecture Notes in
Computer Science, 4382/2007:235–250, 2007.

[21] G. F. Pfister and V. A. Norton. Hot-spot contention and combining in
multistage interconnection networks. IEEE Transactions on Comput-
ers, C-34(10):943–948, October 1985.

[22] W. N. Scherer III and M. L. Scott. Advanced contention management
for dynamic software transactional memory. In Proc. of the 24th
Annual ACM Symposium on Principles of Distributed Computing,
pages 240–248, New York, NY, USA, 2005. ACM.

[23] N. R. Tallent and J. Mellor-Crummey. Effective performance mea-
surement and analysis of multithreaded applications. In Proc. of the
14th ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming, pages 229–240, New York, NY, USA, 2009. ACM.

[24] N. R. Tallent, J. Mellor-Crummey, and M. W. Fagan. Binary analysis
for measurement and attribution of program performance. In Proc.
of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 441–452, New York, NY, USA,
2009. ACM.

http://software.intel.com/en-us/articles/using-intel-thread-profiler-for-win32-threads-philosophy-and-theory
http://software.intel.com/en-us/articles/using-intel-thread-profiler-for-win32-threads-philosophy-and-theory
http://software.intel.com/en-us/articles/using-intel-thread-profiler-for-win32-threads-philosophy-and-theory
http://www.ddj.com/architect/217700473
http://www.ddj.com/architect/217700473
http://java.sun.com/developer/technicalArticles/J2SE/monitoring
http://java.sun.com/developer/technicalArticles/J2SE/monitoring
http://www.highproductivity.org/SSCABmks.htm
http://www.highproductivity.org/SSCABmks.htm
http://www.alphaworks.ibm.com/tech/jla
http://www.alphaworks.ibm.com/tech/jla

	Introduction
	Attributing idleness to its calling context
	A straightforward strategy
	Blocking (sleep-waiting)
	Evaluation

	Blaming idleness on lock-holders
	Extending a prior strategy
	Making it practical
	Evaluation

	Communicating blame directly to lock-holders
	Blame shifting: A distributed and precise strategy
	Blame shifting in action
	In-band vs. out-of-band state
	Allocating out-of-band state
	Accessing out-of-band state

	Dual-representation locks
	Blocking (sleep-waiting)
	Hints for developers

	Case Studies
	MADNESS
	UTS
	SSCA #2

	Related Work
	Conclusions

